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Abstract 

We have developed a 3-D FEL theory based upon the Maxwell-Vlasov equations in­

cluding the effects of the energy spread and emittance of the electron beam, and of beta­

tron oscillations. The radiation field is expressed in terms of the Green's function of the 

inhomogeneous wave equation and the distribution function of the electron beam. The 

distribution function is expanded in terms of a set of orthogonal functions determined by 

the unperturbed particle distribution. The coupled Maxwell-Vlasov equations are then 

reduced to a matrix equation, from which a dispersion relation for the eigenvalues is de­

rived. In the limit of small betatron oscillation frequency, the present dispersion relation 

reduces to the well-known cubic equation of the one-dimensional theory in the limit of 

large beam size, and it gives the correct gain in the limit of small beam size. Comparisons 

of our numerical results with other approaches show good agreement. We present a handy 

empirical formula for the FEL gain of a 3-D Gaussian beam, as a function of the scaled 

parameters, that can be used for a quick estimate of the gain. 

I . Introduction 

It is widely known that transverse emittance and betatron oscillation can significantly 

reduce the gain in a Free Electron Laser{FEL) operating in the high gain regime be­

fore saturation, due to a spread in the longitudinal velocity of electrons. One approach 

to study these effects is based on an integro-differential eigenvalue equation involving 

the radiation field alone, derived by reducing the coupled Maxwell-Vlasov equations[l ]. 

However, inclusion of the emittance and betatron oscillation effects makes it extremely 

• This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
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difficult to solve the equation exactly. Krinsky, Yu and Gluckstern[2] have proposed the 

variational method to solve the equation approximately. Giving up on seeking an exact 

eigenfunction, they replace it by a trial function and concentrate on solutions of eigenval­

ues. The principle behind this method is the fact that the error in the eigenvalue depends 

quadratically on errors in the trial function. However, one must prepare a "good" trial 

function, and in general, the accuracy of calculation is unknown. 

In this paper, we present a new approach based on an orthogonal expansion of the 

electron distribution function. Starting with the Maxwell-Vlasov equations and equations 

of motion for an electron, we combine them into a single integral equation for the electron 

distribution function. The radiation field is expressed explicitly in terms of the Green's 

function of the inhomogeneous wave equation and the electron distribution function. The 

distribution function is then expanded around the unperturbed part in terms of a set of 

orthogonal functions determined by the shape of the unperturbed part. This expansion 

converts the integral equation into a matrix equation, from which a dispersion relation for 

the eigenvalues is derived. This dispersion relation has a form similar to that in plasma 

physics. The present method has the advantage that the higher-order terms in the ex­

pansion can be determined in a systematic fashion. It turns out that the series expansion 

of the perturbed distribution function by an appropriate set of orthogonal functions con­

verges very quickly. As a matter of fact, one can obtain an accurate eigenvalue by taking 

only the lowest-order expansion term. Due to space limitations, here we briefly describe 

only the outline of the formulation and the results. Details of the formulation will be 

presented in a subsequent paper. 

n, Vlasov Equation 

We consider the electron beam moving in the z-direction with average energy ,. 

through a periodic helical wiggler with wave number kw and field strength parameter 

K, We choose z, the distance from the wiggler entrance, as the independent variable. 

After averaging over the fast wiggling motion, the transverse electron motion can be de­

scribed by the harmonic betatron oscillation in the transverse vector ;cp. The transverse 

coordinates to be used in the Vlasov equation are ;cp and its canonical momentum con­

jugate, pp. The longitudinal variables are T, the relative position of an electron from the 

resonan t electron (in time uni ts), and the electron energy,. 

The linearized Vlasov equatioii for the perturbed part of the distribution function, 
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II(zp,pp,T,"{jZ), is then written as 

8/1 811 _ k2 811 dT 811 d"{810 _ 0 
8 + pp 8 pZp 8 + d 8 + d 8 - , Z Zp pp Z T Z "{ 

(1) 

where 10 is the unperturbed electron distribution. In this paper, we assume that the 

focusing in the wiggler is matched so that 10 is a function of pi + k%zi and "{ only, and 

we also assume for simplicity that 10 can be factorized as: 

(2) 

where 10 is normalized so that its integral over six dimensional phase space is equal to 

the total number of electrons. The equation of motion of T is given by 

dT 1 [ 2 k., "{ - "{. 1 ( 2 k2 2)] - = - - + - .pp + pZp , 
dz C kl "{. 2 

(3) 

where c is the speed of light, kl = 2k.,,,{; /(1 + K2), and kp is the betatron wave number. 

(In the absence of external focusing, kp = Kk.,hV2). The energy change is produced 

by the interaction of the electron's helical motion and the radiation field. The vector 

potential AR(Z, z, t) for the radiation field satisfies the inhomogeneous wave equation, 

and its solution can be written using the Green's function of the wave equation and the 

electron charge density corresponding to h. After a lengthy calculation, we obtain the 

expression for the energy change 

(4) 

where 

where k = w/c, kl. = Ikl.l, r. is the classical electron radius, rh is the radius of the 

helical motion, JI(x) and J~(x) are the Bessel function and its derivative, respectively, 

and p",q(kl.) is the Laplace-Fourier transform of the charge density, which is related to 

II(zp,pp,T,"{jz) by 

p",q(kl.) = roo {roo[ roo (roo roo MZp,pp,T,"{jZ)~ppd"{)e-ikl..zP~zp]e-qZdz}ei"'TdT. 
i-co Jo i-co i-oo Jo 

(6) 

Equation(5) is an exact equation. The denominator may be well approximated by [q + 
ik.,(k- kd/kl +ikB2/2] where (J = tan-I(kl./k). 
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If we substitute Eqs.(3) and (4) into Eq.(l) and take its Fourier-Laplace transform, 

the linearized Vlasov equation becomes 

I . dT] E 81",. k2 81",. E dIoll J P (k) (k) ;kJ.·rl:Pd2 k q - tW-d J"'. + PP-8 - Prl:P-8 = - JOJ. -d "'. J. P",. 'J. e ' J. , 
Z rl:p pp , 

(7) 

where I",. is the Fourier-Laplace transform of It (rl:p,pp, T,,; z) 

(8) 

We have ignored the Fourier transform of the initial distribution at z = 0 in Eq.(7) for 

simplicity. (If we retain this term, the problem becomes an initial value problem.) 

Since the betatron motion of the electron is a simple harmonic oscillation, it is natural 

to introduce polar-coordinates in the transverse planes as 

xp = r" cos q,,,, 
p"p '-1. 
kp = r"SID'I'", 

yp = r. cos q,y, 
pyp '-1. 
k

p 
= r.SID 'l'y' 

(9) 

(10) 

Then, the second and third terms in the LHS of the Vlasov equation, Eq.(7), are written 

as 
81",. _ k2 81",. _ -k (81",. + 81",.) 

Pp 8 prl:p 8 - P 8-1. 8-1.' 
rl:p Pp '1'" 'l'y 

(11) 

Now, due to the periodic boundary condition for I",. in the azimuthal angles q,,, and q,y, 
I",. can be Fourier decomposed with respect to q,,, and q,y into an infinite series of modes: 

00 

E (12) 

where m and n are integers. Combining Eqs.(6), (7), and (12), we obtain an integral 

equation for F(m.n) 

"'. 
I . dT . ( ] (m.n) _ diollh) 
q tW dz -tkp m+n) F",. (r",ry,,) - -IoJ.(r) d, 

{00 1'""" roo roo TF(m,n,m',n')( I' ')F(m',n')(' , ')'d"d ']d ' (13) 
x Jo L..J Jo Jo "",. r",ry r",ry "'. r",ry" r" r"ry ry " o m/,n' 0 0 

where the symmetric kernel J(~,;.n.m'.n') is given by 

J(~,;.n.m'.n') (r '" r y Ir~, r~) = ilml+lnHlm'I+ln'D(27r kp )2 

X L: P",.(kJ.)(Jlml(k"r,,)Jlnl(kyry)]' (Jlm'l(k"r~)Jln'l(kyr~)]~kJ. (14) 

and r = Jr; + r~ is the amplitude of the electron position in four dimensional transverse 

phase space. 
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III. General Solution 

By inspecting this equation, it can be seen that the 'Y dependence of FS;"n) is such 

that FSo;·n) ex *ff(q - iw~; - ikp(m + n)). It is then useful to define a radial function 

R~,;,n) as the 'Y integral of FSo;·n) to eliminate the obvious 'Y dependence 

(15) 

The integral equation(13) can be solved in a general way as follows[3J. We expand the 

radial function R~,;,n) using orthogonal functions f~lml,lnl)(r"" r.) as 

" 00 

R(m,n)(r r) - W (r)" a(m,n)f(iml,lnD(r r )rlmlrlnl 
wq x, U - 1. L...J k k x, U x JI ' (16) 

k=O 

Here, the weight function W.I.(r) is defined by 

(17) 

where C is a normalization constant to be chosen. The functions f~lml,lnD(r"" ry) are 

determined so as to satisfy the following orthogonality relationship 

(18) 

Using f~lml,lnD(r"" r.), we expand the Bessel functions as 

00 

Jlml(k",r",)Jlnl(k.r.) = L Cjml,lnl,k(k"" k.) . f~lml,lnD(r"" r.) . r1mlr~nl, (19) 
k=O 

where 

Cjml,lnl,k(k"" k.) = 10
00 

10
00 

Jlml(k",r",)Jlnl(k.r.)W.I.(r)f~lml,lnD(r"" r.)r1ml+lr~nl+ldrxdr •. 
(20) 

The lowest-order term Cjml,lnl,o(k"" ky) has a simpler expression, since the correspond­

ing lowest-order orthogonal function fJ1ml,lnD(r"" ry) is just a constant. In this case, the 

integration over the angle Or = tan-1 ry/r", can be carried out in Eq.(20), with the result, 

(21) 

where "Ok = tan-1 k./ kx • 

Inserting Eqs.(16) and (19) into Eq.(13), multiplying by f~lml,lnD(rx, r.)r1ml+lrtnl+1 and 

integrating over r x and r., we have a matrix equation for the coefficients aim,n): 

(m,n) + " am,nMm,n,/ " (m',n') _ 0 
ak L.-i I-'k,l m',n'.JaJ -, (22) 

m',n',l,j 
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where 

1
00 100 100 W (r)!(lml,lnl)(r r) ,(lml,lnl)(r r )r2lml+lr2lnl+l d' II am," _ .l k .z:, U JI x, 11 % Y ~o d d d 

I'k I - d d r" r. , 
, 0 0 0 ' T 'k () , q - tW- - t P m + n 

dz 

(23) 

and the matrix elements are given by 

M m,n,l 'Iml+lnHlm'I+ln'l) (211'kp)2 roo roo p. (k )C (k k)C (k k )dk dk m',n'J = t C 10 10 wq.L Iml.lnl,' z, 11 Im'I,ln'I,; x, 11 Z II· 

(24) 

The matrix equation can be symbolically written as 

(I + /3 . M)a = 0, (25) 

where a is the vector of the coefficient aLm,n), I is the unit matrix, and the matrix elements 

of /3 and M are given by Eqs.(23) and (24), respectively. The nontrivial solution of Eq.(25) 

requires that 

det(I + /3 . M) = O. (26) 

This dispersion relation gives eigenvalues q as a function of w or vice versa. 

IV, The Lowest-Order Term 

It is straightforward to seek zeros of the dispersion relation by computer and the 

computation requires little cpu time. Numerical studies show a quite rapid convergence 

of solutions as a function of the matrix size. As a matter of fact, we have found that one 

can obtain an accurate eigenvalue for the fundamental mode by taking only the lowest­

order term m = n = k = 0 in both the azimuthal and the radial expansions (see Eqs.(12) 

and (16». In this case, an approximate expression for the dispersion relation can be 

written in a general form as 

1 = 4i~r.(K)2kw roo roo !ol!(,)d, 211'2 kUOL (r)r3dr 
kl C,r ,r io io ( + 2' k k ' - ,r .1 kk2 2)2 q t- - t- pr 

kl w'r 2 

(i P()d(} ( roo 2 2k2, (') J1 (kr'(}) 13d ')2 
X io k _ k k(}2 in 11' pJOL r kr'(} r r , 

o + 'k I + . 0 
q t W kl tT 

(27) 

where !oL(r) is normalized such that J: 211'2kUoL(r)r3dr = 1. 

Let us investigate the general dispersion relation(27). The integrals over, and r 

characterize the Landau damping due to the energy spread and the betatron oscillation 
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via the longitudinal velocity variation. The function in the II-integral (( J1 (kr' 0) I (kr'll))' 

is the well-known diffraction angular distribution of a wave when injected into a screen 

with a circular hole of radius r'o The integral over II represents the amount of overlap 

between the angular distribution of radiation from a single electron and the diffraction 

angular distribution of the radiation determined by the electron transverse distribution. 

In what follows, we write down the above equation in a more specific way for various 

models of fOl.(r). Longitudinally, we assume a Gaussian distribution with the rrns energy 

spread, u..,. 

Hollow Beam 

Waterbag Beam fOl.(r) = (1r~kp)20(1- (~)2) 

_ t
2 

2( 4J2 ( kRoII) )2(kRo)2I1dll 
1 = 2i k (2p kw j3 {I roo x

3 
e 2 dxdt ('f _....>.( k_Ro....;:...II.,...) 2----:,..-----:'""""_ 

kl ..j2ii 10 10 (q + 2i ~ kwu..,t _ i4kk~~x2)2 10 q + ikw k ~l kl + /~2 
(29) 

Gaussian Beam 

x 2 t2 

1 = i k (2pkw)3 roo roo e 2 x3e -2" dxdt {f e-(kuzll)2 (keT,Ylldll 

2kl ..j2ii 10 10 ( + 2' k k t .1 kk2 2 2)2 10 k - kl kll2 . 
q Z kl wU.., - z2 peTzX q + ikw kl + iT 

(30) 

In the above equation, p is the Pierce parameter[4] defined by (2pkw)3 = 21rr.(K lir )'nokwh .. 

no is the charge density, U z is the rms transverse beam size, 0(x) is the step function 

0(x) = lfor x > 0 and 0(x) = 0 for x < 0, and we have approximated [(JI(krhll)/(krhll))2+ 

J~2(krhll)] by 1/2, assuming that rh is much smaller than the beam size. 

In the limit of large beam size, Ro --t 00, when u.., = 0 and kp = 0, the dispersion 

relation(28) for the hollow beam will reduce to the well-known cubic equation of the one­

dimensional theory. This can be shown !>riefly as follows. In this limit, Eq.(28) can be 
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approximated by 

(31) 

It follows using JoOO (J1(X)/X)2Xdx = 1/2 that 

2 • k - kl . k 3 
q (q + tkw kl ) - t kl (2pkw) = o. (32) 

Introducing fI. = iq/ kw, Eq.(32) is the cubic equation of the high gain regime. 

In the limit of small beam size, I4J --+ 0, when (1., = 0 and kp = 0, the dispersion 

relation(28) also gives the correct asymptotic gain derived by Moore[5]. In this limit, the 

dispersion relation(28) when k = kl can be approximated by 

g2 _ [00 x (J1(X»2dx = 0 (33) 
2 10 x 2 - igCz2 X ' 

where 9 = q/«2pkw)j(2k1RJ)t) and Cz = (2pkw)~(2klRJ)~ are Moore's scaled gain and 

beam size, respectively. By performing the partial integral in Eq.(33) and neglecting the 

log 9 term, we obtain Moore's expression 

g2 1 2 
- ~ -log-
2 4 Cz 

, ~l 2 or 9 ~ - og-- 2 Cz· (34) 

As anticipated from the above argument, numerical studies show that the gain 9 obtained 

by the present dispersion relation(28) is in excellent agreement with that of Moore in the 

entire range of beam size. 

v. Numerical Results 

As Krinsky, Yu and Gluckstern[2] have pointed out, the growth rate of the fundamental 

guided mode can be expressed in a scaled form using only four dimensionless scaling 

parameters. For the constant beam current case of practical interest, one form of such a 

scaling relation is 

(35) 

where ex is the rms transverse" emittance of the electron beam, and D is the scaling 

parameter defined by 

D = 2eZo 1(2 10 ( ) 
7rmc2 1 + 1(2 ,r ' 36 

with 10 the electron beam current, Zo the impedance of free space, e the elementary 

charge, and m the electron rest mass. Note that D is independent of the model for 
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fOl.(r). For the waterbag model, our value of D is smaller than that defined by Krinsky, 

Yu and Gluckstern[2] by a factor of J2. 
The solid curves in Fig. 1 show the scaled growth rate Re(q)j(kwD) as a function of 

2k1ex for several values of kpj(kwD) for the waterbag model. The energy spread u,,/j D is 

set to 0, and the detuning is chosen to yield the maximum growth rate. This figure covers 

most of the practical range of FEL parameters. The dotted curves show the numerical 

results from Krinsky, Yu and Gluckstern's variational method for the same waterbag 

model. Good agreement is found. In Fig. 2, we plot Re(q)j{kwD) against 2k1ex for several 

values of kpj{kwD) for the Gaussian model. We choose again u,,/j D = O. Comparing Fig. 

1 with Fig. 2, we notice that the Gaussian model shows a considerably larger reduction 

of Re{q)j{kwD) due to Landau damping for large kpj{kwD) when 2k1ex > 1. This is also 

the case with the parabolic distribution of fOl.{r), which gives similar curves to those of 

the Gaussian model. We also notice that all figures show more or less identical values of 

Re(q)j{kwD) for 2k1ex < 1. This implies that the emittance or the rms value is a good 

measure for the beam size when comparing results from different models in the present 

range of the emittance. 

Finally, for a quick estimate of the FEL gain, we present a handy empirical formula of 

Re(q)j(kwD) including the energy spread which agrees well with the gains obtained from 

the dispersion relation(30) for the Gaussian model: 

I 
Re(q) 

og kwD - - (0.75 + 0.233 + 0.01632 
) 

[ 
kp 2 kp 

x 1+(2klexkwD) j(0.17+0.0304Iog
kwD

) 

1 

( - -2) ((U,,/)2 (U,,/ )4 U"/)6]; + 41.34 + 3.69.=. + 3.62.=. . D + 2.18 D + 70.9( D ) ,(37) 

where 
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